Abstract

In this investigation, microstructural characteristics, mechanical properties, and residual stress magnitude of dissimilar weld joints (DWJs) between creep strength enhanced ferritic-martensitic (CSEF) P92 steel and austenitic stainless steel (ASS) 304L has been investigated. The Thermanit MTS 616 (P92 filler) filler metal was employed to prepare P92/304L SS DWJs. The groove geometry also plays a crucial role in DWJs, so the conventional V-groove and narrow shape groove geometry was adopted for P92/304L SS DWJs. The microstructure characterization was performed using optical microscope (OM), scanning electron microscope (SEM), and filed emission SEM (FESEM). The microstructural examination showed the formation of the δ-ferrite grains and unmixed zone (UZ) at the weld interface. The martensitic microstructure produced after welding is brittle due to quenched martensite and the dissolution of precipitates. Thus, the post-weld heat treatment (PWHT) known as tempering was carried out at 760 °C for the period of 2 h to get tempered martensitic microstructure. The ultimate tensile strength (UTS) of the as-weld (AW) and PWHT tensile specimen of the P92/304L SS DWJs was 660 MPa and 643 MPa, respectively for V-groove geometry specimens and 640 MPa and 609 MPa, respectively for narrow groove geometry specimens. The tensile fracture was experienced at 304L base metal, and the UTS value of DWJs was very close to the UTS of the 304L SS. The average microhardness value of the martensitic weld metal (352HV0.5) and coarse-grain heat-affected zone (CGHAZ, 366HV0.5), fine grain HAZ (FGHAZ, 320HV0.5) in the AW state was beyond the maximum permissible hardness value of 265HV0.5, as per the A335/A335M − 15a standard. The hardness value beyond 265HV0.5 indicates the undesirable brittle martensitic microstructure. After PWHT, the micro-hardness value of the CGHAZ (235HV0.5), FGHAZ (215HV0.5), and inter-critical HAZ (ICHAZ, 201HV0.5) was below the maximum allowable value of 265HV0.5 for P92 material because of the tempering of the quenched martensite. However, the Charpy test result concluded that the problem associated with the martensitic P92 filler is to obtain an acceptable value of the impact toughness of weld metal in AW state. The Charpy impact toughness of weld metal for P92/304L SS DWJs in AW condition was 10 J (V-groove geometry) and 37 J (narrow groove geometry), while for PWHT condition, it was 188 J (V-groove geometry) and 150 J (narrow groove geometry). The impact toughness of the P92 filler weld was below the minimum requirement of 47 J (EN ISO 3580:2017) in AW state. However, the impact toughness of the welds made by using P92 filler metal met the minimum requirement of 47 J (EN ISO 3580:2017) after PWHT due to the tempering of the martensite. The residual stress analysis using deep hole drilling (DHD) technique revealed the existence of the compressive residual stresses in the weld metal and P92 HAZ in as-weld and PWHT condition. The compressive stress was dominant because of the martensitic phase transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call