Abstract

High-chromium cast iron (HCCI) coatings with multicomponent carbides were prepared on low-alloy steel substrates using a laser cladding technique in this work. The microstructure and wear resistance of the coatings were characterized via optical microscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and block-on-ring wear testing. Multicomponent carbides (Ti, Nb, Mo, W, V)C with an FCC structure and multicomponent compounds (Nb, Mo, W, V) (B,C) with an FCC structure were found in the microstructures of coatings after multielement doping. In addition, (Cr, Mo, W, V)23C6 compounds could be obtained by heat treatment. These multicomponent compounds were beneficial for obtaining coatings with an excellent hardness (60 HRC) and high wear resistance. This multielement doping method provides an effective modified method for preparing high-wear-resistance laser cladding coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.