Abstract

In this paper it is presented the microstructure and wear resistance of FeNiCrMnCu high entropy alloy. High entropy alloys are composed by at least five metallic elements in equimolar or non-equimolare proportions. High entropy alloys a brand new category of metallic materials, appeared to be a new effort in materials science and engineering, which attracted great interest. To obtain FeNiCrMnCu high entropy alloy we used an 8000 Hz induction furnace. The chemical composition was determined by EDAX. Microstructural analysis was performed using optical microscopy and SEM (scanning electron microscopy), which showed that the FeNiCrMnCu high entropy alloy has a dentritic structure and form a solid solution. Choosing copper as the main element (copper tends to segregate in interdentritic region due to its positive enthalpy of mixing with many common elements) [1], along with the iron, nickel, chromium and manganese, led to obtaining a dentritic structure specify for solid solution, which, however, did not lead to a significant hardness for FeNiCrMnCu high entropy alloy. In this work we selected pure metallic elements like: Fe, Ni, Cr, Mn and Cu. The quantity of alloy developed has 1.5 kg. Friction and wear resistance were the studied by using a reciprocating sliding test machine, in a pin on disk configuration, using aluminum as counter face. Hardness value regarding FeNiCrMnCu high entropy alloy was 184 HV and medium friction coefficient value for FeNiCrMnCu high entropy alloys was 0.86 for 28 minutesc and 1.13 for the first 20 seconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.