Abstract

We report the early stage friction and wear characteristics of aluminium containing nanosized lead dispersions. The nanocomposite was produced by rapid solidification. The experimental results indicate a significant decrease in friction and wear rate in comparison to its coarse grained counterparts. We show that the observed results suggest an adhesive type of wear mechanism. However, increase in hardness due to refinement of the aluminium grains cannot quantitatively rationalize the results. We explore and discuss the role of nanoscaled lead particles and the mass transport between the sample and counterface via mechanical alloying, in the formation of tribolayers affecting the tribological properties. The plane view and cross-sectional transmission electron microscopy reveals significant elongation as well as coarsening of the lead particles during the process of wear. We attempt to understand these results in the framework of moving dislocations and their assistance to the mass transport among the dispersed lead particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.