Abstract

The low coefficients of friction and wear rates of transition metal carbonitride make them excellent candidates for friction and wear applications. Coatings based on titanium carbonitride alloyed with Ta and Al were deposited using reactive magnetron sputtering on the surface of titanium VT1-0 and steel AISI 304. The effect of alloying titanium carbonitrides with Ta and Al and acetylene flow during deposition on the structure, composition, and tribological properties of the coating was studied. TiAlCN and TiTаCN coatings were deposited in various acetylene flows along with stable argon and nitrogen flows. Scanning electron microscopy, optical microscopy, X-ray phase analysis, and sliding wear test (ball-on-disk method) in two media were used to study the resulting coatings. The average coefficient of friction of the coating under friction without lubrication varied in the range of 0.13-0.85 and under friction with lubrication in the range of 0.0015-0.081. From the point of view of wear rate, it is shown that the most wear-resistant coating under friction conditions with and without lubrication is TiAlCN-2. The resulting coatings can be useful as protection for machine parts or tools that are subject to friction and wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.