Abstract

A Mg–14.28Gd–2.44Zn–0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30–300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed of α-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, and β-[(Mg,Zn)3Gd] phase. However, most of the β-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call