Abstract

Scanning electron microscope (SEM) observation was performed and showed that shank bone is a kind of bioceramic composite consisting of laminated hydroxyapatite and organic materials. The hydroxyapatite layers are parallel with the surface of the bone and consist of numerous thin and long hydroxyapatite sheet fibers. The hydroxyapatite sheet fibers in different hydroxyapatite make a little angle with each other and compose a kind of screwy microstructure. The maximum pullout force of the screwy microstructure was investigated and compared with that of parallel microstructure. It shows that the maximum pullout force of the screwy microstructure is markedly larger than that of the parallel microstructure, which was experimentally validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.