Abstract

In the present work, Yb2Si2O7 powder was synthesized by solid-state reaction using Yb2O3 and SiO2 powders as starting materials. Atmospheric plasma spray technique was applied to fabricate Yb2Si2O7 coating. The phase composition and microstructure of the coating were characterized. The density, open porosity and Vickers hardness of the coating were investigated. Its thermal stability was evaluated by thermogravimetry and differential thermal analysis (TG-DTA). The thermal diffusivity and thermal conductivity of the coating were measured. The results showed that the as-sprayed coating was mainly composed of crystalline Yb2Si2O7 with amorphous phase. The coating had a dense structure containing defects, such as pores, interfaces and microcracks. The TG-DTA results showed that there was almost no mass change from room temperature to 1200 °C, while a sharp exothermic peak appeared at around 1038 °C in DTA curve, which indicated that the amorphous phase crystallized. The thermal conductivity of the coating decreased with rise in temperature up to 600 °C and then followed by an increase at higher temperatures. The minimum value of the thermal conductivity of the Yb2Si2O7 coating was about 0.68 W/(m K).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call