Abstract

The microstructure and crystallographic preferred orientation (here referred to as texture) in lherzolites of the Balmuccia massif have been investigated in order to unravel the thermomechanical history of this massif. Two deformation events may be recognized in the microstructure. In olivine the first deformation led to a coarse-grained dynamic recrystallization. The second deformation produced the subgrain and dislocation structure and a fine-grained dynamically recrystallized rim around the matrix grains. The subgrain boundaries are (100) and occasionally (001) tilt boundaries with variable tilt axis. The free dislocations are mainly screw dislocations with an [001] Burgers vector. An analysis of the dislocations bound in subgrain boundaries and the free dislocations yields {0 kl}[100] and { hk0}[001] as main activated slip systems. The orthopyroxenes are not recrystaUized and show deformation-induced clinoenstatite lamellae. The texture of olivine is characterized by [010] perpendicular to the foliation and [100] parallel to the lineation. In the orthopyroxene [100] is normal to the foliation and [001] normal to the lineation. The results are comparable with those found in similar massifs except the texture in the orthopyroxene. Stress and temperature estimates based on the dislocation density, subgrain size, dynamically recrystaUized grain sizes and the ortho-clinoenstatite transformation yield ≈ 20 MPa and ≈ 1000°C for deformation event I and 300 MPa and 650°C for deformation event II. The first and second deformation events are interpreted as intrusion of mantle material into the lower crust and the tilting of the Ivrea zone, respectively. From the correlation of the texture and microstructure it is concluded that the texture in the olivine reflects the first deformation event. The texture of the relatively hard and therefore only weakly deformed orthopyroxene may be explained by external rotation in the ductile olivine matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.