Abstract

An AM30 magnesium alloy was extruded by using a lab-scale flat die at ~450 °C and various ram speeds: 5 mm/min, 10 mm/min, 20 mm/min, 30 mm/min, and 50 mm/min, respectively. Microstructure and texture in the representative locations inside the die and the extrudate of the AM30 at different ram speeds were examined by electron backscatter diffraction (EBSD). Significant dynamic recrystallization (DRX) occurred inside the die, whereas static recrystallization (SRX) took over in the extrudate outside the die. Profuse \(\{ 10\bar 12\} \left\langle {10\bar 1\bar 1} \right\rangle\) extension twinning activated during extrusion at low ram speed of 10 mm/min, but twinning was hardly observed at high ram speed of 50 mm/min. DRX and SRX led to different microstructure evolution at different extrusion speeds. Possible mechanisms that govern the DRX and the SRX were analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.