Abstract

Microstructure and crystallographic texture evolution during single- and multiple-pass friction stir processing (FSP) of an age-hardenable aluminum alloy 2024 (Al-Cu-Mg) was investigated. Multiple-pass experiments were carried out using two different processing strategies, multi-pass FSP, and multi-track FSP. Effect of a post-FSP heat treatment above and below the solutionizing temperature of the alloy was also studied. FSP experiments were carried out using an optimal set of parameters. Characterization tools used in the study include scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD), electron probe micro-analyser (EPMA), and X-ray diffraction (XRD). Microstructural features indicate the occurrence of particle stimulated nucleation (PSN) assisted dynamic recrystallization (DRX) as the dominant microstructural evolution mechanism in the nugget zone. Geometrical coalescence occurred, leading to the formation of some larger grains in the nugget zone. Heterogenous micro-texture distribution was observed in the nugget zone with the bulk textures consisting of FCC shear texture components dominated by A (1)*/A (2)* and C. Microstructure and texture in the nugget zone remained stable after both routes of multiple-pass processing, demonstrating the possibility of FSP to produce bulk volume of fine-grained materials. Post-FSP heat treatment indicated the stability of microstructure and texture up to 723 K (450 A degrees C) owing to relatively lower strain energies retained after FSP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.