Abstract

The grain structure and texture evolution during annealing a Al–0.13% Mg submicron-grained alloy, deformed by plane-strain compression (PSC) at cryogenic temperatures, has been investigated by transmission electron microscopy and electron backscatter diffraction. After deformation the alloy contained a lamellar grain structure with a high-angle grain boundary (HAGB) spacing of 190 nm and an area fraction of ∼80%. On annealing the grain structure coarsened and transformed from lamellar to equiaxed. Remarkably, the fraction of low-angle grain boundaries (LAGBs) progressively increased during annealing, to ∼50% above 300 °C, leading to instability and discontinuous recrystallization at higher temperatures. This resulted in a “bimodal grain structure” comprised of bands of coarser grains and fine subgrains, arising as a result of the increase in proportion of lower-mobility LAGBs. The surprisingly large increase in LAGB fraction on annealing is shown to be related to orientation impingement, originating from the strong texture present after PSC in liquid nitrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.