Abstract

In the present work, the tensile properties and microstructure of pack cementation preparing aluminized AISI 321 stainless steel with subsequent annealing treatment was investigated. The results reveal that the coatings of aluminized AISI 321 stainless steel are mainly composed of outermost Al2O3 layer, Fe-Al compound intermediate layer and Fe(Al,Cr) solid solution diffusion layer. The cross shape precipitate (NiAl) and strip precipitate (Ni3Al) are observed in Fe(Al,Cr) layer. After annealing, no new phase in aluminized coating is detected, meanwhile, the thickness of the aluminized coatings is increased and the porosity of Fe-Al layer is increased as well. In addition, the size of NiAl precipitates is decreased. The strength and plasticity of stainless steel are degraded by aluminizing treatment. However, after annealing, the aluminized steel exhibits a lower strength but a higher ductility. The crack initiation region of both aluminized steel with or without annealing treatment comprise coarse columnar grains and cleavage planes with river patterns. The fracture model of aluminized steel is cleavage fracture, while a mixed of intergranular and transgranular fracture is observed in aluminized annealed steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.