Abstract

Equal channel angular pressing (ECAP) was performed on extruded Mg-Zn-Y-Zr (Mg-5.0wt%Zn-0.9wt%Y-0.2wt%Zr) alloy at 300 oC. After 8 ECAP passes, average grain size of the alloy was reduced to about 1.4 μm, and the quasicrystalline phases were broken and dispersed in the matrix. In addition, nano- quasicrystallines were precipitated from the matrix during ECAP processing. After ECAP, the elongation to failure of the extruded material was significantly improved. Only after 2 ECAP passes, the elongation to failure was 29%, and after 8 ECAP passes, it reached 35%, which was three times larger than that of the as-extruded alloy. However, both yield strength and ultimate tensile strength were decreased with the increasing ECAP passes, which was considered to be resulted from the {0002} basal plane texture modification during ECAP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call