Abstract

The effects of graphene addition on the phase formation and superconducting properties of (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) ceramics synthesized using the co-precipitation method were systematically investigated. Series samples of Bi-2223 were added with different weight percentages (x = 0.0, 0.3, 0.5 and 1.0 wt.%) of graphene nanoparticles. The samples' phase formations and crystal structures were characterized via X-ray diffraction (XRD), while the superconducting critical temperatures, Tc, were investigated using alternating current susceptibility (ACS). The XRD showed that a high-Tc phase, Bi-2223, and a small low-Tc phase, Bi-2212, dominated the samples. The volume fraction of the Bi-2223 phase increased for the sample with x = 0.3 wt.% and 0.5 wt.% of graphene and slightly reduced at x = 1.0 wt.%. The ACS showed that the onset critical temperature, Tc-onset, phase lock-in temperature, Tcj, and coupling peak temperature, TP, decreased when graphene was added to the samples. The susceptibility-temperature (χ'-T) and (χ″-T) curves of each sample, where χ' and χ″ are the real and imaginary parts of the susceptibility, respectively, were obtained. The critical temperature of the pure sample was also measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.