Abstract

Wear-resistant titanium materials with high hardness and strength can be manufactured by introducing very fine titanium silicides and carbides into an ultrafine-grained titanium matrix. Nanocrystalline titanium particles with fine and homogeneous distributed carbon and silicon were generated by high energy ball milling of titanium with silicon powder or additions of the organic fluid hexamethyldisilane (HMDS). Spark Plasma Sintering (SPS) was chosen to compact the granules to prevent grain coarsening during sintering. Additionally, the Ti5Si3 and TiC x dispersoids limited grain coarsening. After sintering, the novel materials exhibited high hardness and strength, and excellent wear resistance. The electrochemical behaviour (comparable to that of commercially pure titanium) was also tested and showed the excellent suitability as an implant material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.