Abstract

The grain size, recrystallization, phase transformation and mechanical properties of a cold-rolled high-strength steel (HSS) are studied after annealing with high (~140°C/s) and ultra-high (~1500°C/s) reheating rate, followed by subsequent water quenching without isothermal soaking. By monitoring the hardness and microstructure, it was shown that the increase of the reheating rate from 140°C/s to 1500°C/s causes grain refinement from 5 µm to 1 µm in diameter and the final ferrite grain size depends significantly on the reheating temperature and reheating rate. It was observed that after an extreme reheating rate of ~1500°C/s the α-γ phase transformation starts before the completion of recrystallization in the recovered matrix. The crystallographic texture of the ultrafast reheated and water-quenched high-strength steel inherits the cold-rolled deformation texture with well pronounced RD and ND texture fibres, even after the α-γ-α′ phase transformations. It was found that the ultrafast reheating results in a very fine non-equilibrium ferrite-martensite structure with an excellent ultimate tensile strength of ~1400 MPa and an acceptable elongation at fracture. The observed data are very promising from industrial application point of view and open up possibilities for further structural refinement and alternative texture control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.