Abstract

Abstract Ti–Co–Si ternary intermetallic alloys with Ti 5 Si 3 as the main reinforcing phase and intermetallic TiCo as the toughening matrix were fabricated by the laser-melting deposition (LMD) process. Microstructure of the intermetallic alloys was characterized by OM, SEM, XRD and EDS. High-temperature oxidation resistance of the alloys was evaluated by isothermal oxidation at 1173 K and metallic dry-sliding wear property was evaluated at room temperature. The effect of reinforcing phase Ti 5 Si 3 content on hardness, oxidation and wear resistance of the alloys was investigated. Results indicate that microstructure of the alloys transforms from hypoeutectic to hypereutectic, while hardness and oxidation resistance increases with the increasing Ti 5 Si 3 content. The alloys have good oxidation resistance at 1173 K and the oxidation kinetic curves are approximately parabolic. Wear resistance of the alloys is insensitive to the microstructure and is up to 15–19 times higher than the hardened tool steel 1.0%C–1.5%Cr under dry-sliding wear test conditions. The excellent wear resistance of alloys is attributed to the effective reinforcement of Ti 5 Si 3 and the excellent toughness of the intermetallic TiCo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.