Abstract

Abstract 1 mm thick sheets of 6016-T4 aluminum alloy and Zn coated steel were joined in a lap configuration using the Cold Metal Transfer (CMT) welding process with an Al-5Si filler metal and different powers and welding speeds. The formed reaction layer ensuring the bonding between the aluminum melting zone and the steel sheet doesn’t exceed 10 μm in thickness, and is composed of an iron-rich Fe-Al intermetallic on the steel side, and a Fe-Al-Si ternary compound on the aluminum weld side. The current waveform producing the lowest mean electrical power gives the most regular welds with lowest porosity in the melting zone. By optimizing the welding speed with this current waveform, the strength of the assembly under monotonic shear-tensile loading can reach 70% of that of the aluminum base material, and its lifetime under cyclic tensile loading exceeds 104 cycles for a maximal linear loading of 98 N mm−1 and 107 cycles for a maximal linear loading of 42 N mm−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.