Abstract

A mixture of 70 % metakaolin and 30 % blast furnace slag powders, employed as the raw material, is mixed with different alkaline activating solutions in the production of metakaolin-based inorganic polymer foams (MIPF) with various densities ranging from 0.4 to 1.0 g/cm3 using a mechanical foaming process. The microstructures of metakaolin and slag powders, inorganic binder, and MIPF specimens are characterized by using XRD, FTIR, and image analyses. The effects of stirring time, water/binder ratio, and foaming agent on the properties of inorganic binders are also evaluated. Moreover, the pore size distributions, thermal and mechanical properties of the MIPF specimens are obtained by conducting a series of measurements and then compared with each other. Based on the experimental results, it is found that the measured cell length, cell wall thickness, compressive strength, flexural strength, and coefficient of thermal conductivity of the MIPF specimens are significantly affected by their densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.