Abstract

Nickel-based superalloys are used extensively for a variety of industrial applications involving high temperatures and aggressive environments. However, under conditions of appreciable mechanical wear (adhesive or abrasive), these materials have to be distinguished by suitable wear protection. The diffusion boronizing is the thermo-chemical treatment, which improves the tribological properties of nickel and its alloys. Nevertheless, the long duration of this process is necessary in order to obtain the layers of the thickness up to about 100μm. Instead of the diffusion process, in this study the laser boriding is used for producing boride layer on Inconel 600-alloy. During the laser alloying, the external cylindrical surface of base material is coated by paste, including amorphous boron. Then the surface is re-melted by a laser beam. The high overlapping of multiple laser tracks (86%) causes the formation of uniform laser-alloyed layer in respect of the thickness. Laser re-melted zone, heat-affected zone and the substrate characterize the microstructure. In the re-melted zone, the three areas are observed: compact borides zone consisting of nickel, chromium and iron borides (close to the surface), zone of increased percentage of Ni–Cr–Fe-matrix (appearing in the greater distance from the surface) and zone of dominant Ni–Cr–Fe-matrix percentage (at the end of the layer). The hardness obtained is comparable to that-obtained in case of diffusion boriding. Simultaneously, the laser-borided layers are significantly thicker (about 346 or 467μm depending on the laser power used). The significant increase in their abrasive wear resistance is observed. The wear intensity factors, as well as the relative mass loss of the laser-borided samples, are ten times smaller in comparison with untreated Inconel 600-alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call