Abstract

This article reports on feasibility experiments carried out with oxy-acetylene spray system with various oxygen to fuel ratios using two different tungsten carbide powders and powder feeding methods, to evaluate the newly developed fused WC, synthesised by transferred arc thermal plasma method. Transferred arc thermal plasma method is more economical and less energy intensive than the conventional arc method and results in a fused carbide powder with higher hardness. The microstructure and phase composition of powders and coatings were analysed by optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Carbon content of the powders and coatings were determined to study the decarburisation of the material during spraying process. Coatings were also characterised by their hardness and abrasive wear. The effects of metallurgical transformation and phase content are related to wear performance. The results demonstrate that the powders exhibit various degree of phase transformation during the spray process depending on the type of powder, powder feeding and spray parameters. The carbon loss during the spray process in excess of 45% resulted in reduced hardness and wear resistance of the coatings. Coatings with high amount of WC and W 2C along with FeW 3C showed higher wear resistance. Thus, coatings of high wear resistance can be produced using fused tungsten carbide powder with WC and W 2C phases, which can be economically synthesised by thermal plasma transferred arc method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.