Abstract

The microstructure and properties of Cu-C pseudoalloy films prepared by R.F. magnetron sputtering have been investigated. As Cu and C are mutually immiscible, nonequilibrium supersaturated solid solutions of C in Cu with nanocrystalline microstructures were observed in as-deposited films. Upon heating of the films, three major transition events took place. Recovery occurred at ∼280 to 300 °C, while at ∼400 °C, crystallites started to growth and coalescence, due to the release of strain energies stored during deposition. Annealing at above 600 °C led to the occurrence of grain growth and altered the microstructure considerably. Although attempts have been made in this study, a possible annealing-induced phase separation could not be unambiguously identified. Yet, the fact of low twin densities and fine grain structures observed in the annealed films suggests that the extensive grain growth was impeded by the presence of carbon. Resistivity and hardness properties correlated well with the film microstructure and were governed by the impurity effect of carbon. Low-carbon Cu-C films yielded relatively low resistivity, attributable to the improved film microstructure. Hardness results indicated the strengthening of films was mainly due to fine structure, presence of carbon, and grain refinement by annealing twins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.