Abstract

Due to the largely inhomogeneous deformation among constituent phases, the advanced high-strength multi-phase steels are always facing challenges when applied to automotive parts where local formability is critically required. In this work, two characteristic microstructures were produced from a low carbon Ti-V microalloyed steel by varying the cooling path. In the ferrite single-phase microstructure resulted from “ultra-fast cooling (UFC) + furnace-cooling (FC)”, the hole-expanding ratio of 200% and tensile strength of 647 MPa were achieved. In the ferrite-bainite-martensite (F+B+M) multi-phase microstructure produced by “UFC + air-cooling (AC) + UFC”, the ferrite has been strengthened by Ti-V carbides to promote the strain partitioning, which resulted in the tensile strength of ≥780MPa, a moderate elongation and hole-expanding ratio of 93%. The strengthening contributions of Ti-V carbides were calculated to be 126MPa and 149MPa in the ferrite single-phase and F+B+M multi-phase microstructure, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call