Abstract

A comprehensive microstructure analyses were conducted for CSP processed Nb, Ti microalloyed steel, especially focusing on the precipitation behavior of the microalloying elements Nb and Ti. After coiling, the steel exhibits mainly a ferrite microstructure. The average ferrite grain size is 5.3 μm. The ferrite has a transitional morphology from polygonal ferrite to non-polygonal ferrite and is characterized by a moderate dislocation density of 2.47E+10/cm2. A high density of Nb, Ti complex star-like or cruciform shaped precipitates exist in the steel. They are Nb-rich and the average size is around 150 nm. About 49% Nb of the total in the steel is tied up in star-like precipitates, thus remarkably reducing the amount of Nb available for austenite conditioning, transformation temperature control and precipitation as small strengthening particles in ferrite. The main strengthening mechanisms found in the steel are the grain refinement and dislocation strengthening. Of the total yield strength, they represent contributions of 44% and 24%, respectively. There is a very little precipitation strengthening in the steel. It is thought that Nb, Ti complex star-like precipitate is prone to form in Ti-containing niobium microalloyed steel produced by compact strip processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.