Abstract
The performance of the blast furnace is strongly affected by the position and thickness of the cohesive zone, which is largely influenced by the high-temperature properties of the iron-bearing materials. During its reduction, softening and melting, ferrous materials undergo major microstructure changes and its understanding is essential to develop new raw-materials, technologies, and models. In this study, the behavior of reduction, softening and melting of a lump ore, an acid pellet, and a sinter was characterized by softening and melting (S&M) experiments. After that, to access the samples’ structural transformations, interrupted S&M tests were carried out up to four different conditions based on contraction and pressure loss levels. The obtained products were characterized according to its density (true and apparent), porosity (open, closed and total), phase composition by X-ray diffraction and microstructure (reflected light microscopy and electron scanning microscopy). From the S&M test results, three main regions of reduction were characterized, namely: solid/gas reduction, reduction retardation, and melting reduction. In the solid/gas reduction, samples open porosity increased, with reduction following the shrinking core model. On the region of reduction retardation, a sharp decrease in open porosity was identified together with the diminishing of the reduction rate, which occurred due to the iron shell porosity being clogged due to the slag transfer from the particles’ cores to its periphery. At the melting exudation region, reduction retardation ceased and exudation of the ferrous slag lead to a peak of reduction. The lower the reduction degree of the samples at this stage, the higher the consumption of carbon. Furthermore, at 10 pct contraction, a pseudo-globular wustite structure interspersed with slag was observed for the pellet and sinter cores. At 50 pct contraction, the previous structure coalesced to form a globular shape wustite in a well-connected slag matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.