Abstract

Three different castables were prepared as steel-ladle purging-plug refractory materials: corundum-based low-cement castable (C-LCC), corundum–spinel-based low-cement castable (C-S-LCC), and no-cement corundum–spinel castable (C-S-NCC) (hydratable alumina ρ-Al2O3 bonded). The properties of these castables were characterized with regard to water demand/flow ability, cold crushing strength (CCS), cold modulus of rupture (CMoR), permanent linear change (PLC), apparent porosity, and hot modulus of rupture (HMoR). The results show the CCS/CMoR and HMoR of C-LCC and C-S-LCC are greater than those of the castable C-S-NCC. According to the microstructure analysis, the sintering effect and the bonding type of the matrix material differ among the three castables. The calcium hexaluminate (CA6) phase in the matrix of C-LCC enhances the cold and hot mechanical strengths. In the case of C-S-LCC, the CA6 and 2CaO·2MgO·14Al2O3 (C2M2A14) ternary phases generated from the matrix can greatly increase the cold and hot mechanical strengths. In the case of the no-cement castable, sintering becomes difficult, resulting in a lower mechanical strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call