Abstract

TiC/a-C nanocomposite films were deposited by rf magnetron sputtering on silicon substrates. A thin Cr inter-layer was interposed to enhance the interfacial adhesive strength. At a low deposition power of 25W, the formation of TiC phase with (200) orientation was observed. Cross sectional scanning electron microscopy (SEM) image of this film showed growth with columnar microstructure. However, at higher deposition powers, 75W and 125W, several XRD peaks related to TiC were observed including prominent TiC (111) orientation. These films were found to be composed of fine spherical grains embedded in an amorphous carbon (a-C) matrix. Weak tribological performance and poor film/substrate adhesive resistance were observed in the 25W deposited columnar structured film. However, films deposited at higher power exhibited superior tribological and scratch resistant properties such as low friction coefficient and high wear resistance. Such a large discrepancy in friction and wear behavior of these films could be explained in terms of microstructure and phase composition. Films with columnar microstructure possess residual compressive stress, low hardness and reduced fracture toughness. In contrast, spherical shaped TiC nanograins embedded in a-C matrix exhibited superior hardness and high fracture toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.