Abstract

The effect of tetrasodium of 1-hydroxy ethylidene-1, 1-diphosphonic acid (HEDP·4Na) on the microstructure and phase characterization of alkali-activated fly ash–slag (AAFS) materials is not clear or well documented. In this study, XRD, DTG, TAM-air, and SEM analyses of AAFS were used to identify the microstructural changes in AAFS made with HEDP·4Na. Meanwhile, the workability and compressive strength of AAFS were evaluated. The results demonstrated that the early-age alkaline-activated reactions were retarded due to the addition of HEDP·4Na in the AAFS mixture. However, the degree of gel formation was relatively increased at a later age in the AAFS made with HEDP·4Na compared to the plain AAFS mixture. Additionally, in comparison to the control group, the incorporation of HEDP·4Na in AAFS specimens resulted in improved flowability, with increments of 5%, 15%, and 24% for concentrations of 0.1%, 0.2%, and 0.3%, respectively. The initial and final setting times were prolonged by 5% to 50%, indicating a beneficial impact on the rheological properties of the AAFS fresh mixture. Furthermore, the addition of HEDP·4Na led to an improvement in compressive strength in the AAFS mixtures, with enhancements ranging from 13% to 16% at 28 days compared to the control group. With the presence of HEDP·4Na, the increase in the degree of reactions shifted to the formation of gel phases, like C-S-H, through the combined measurement of TGA, XRD, and SEM, resulting in a denser microstructure in the AAFS matrix. This study presents novel insights into the intricate compatibility between the properties of AAFS mixtures and HEDP·4Na, facilitating a more profound comprehension of the potential improvements in the sustainable development of AAFS systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call