Abstract

WC-based coatings deposited by high velocity oxy-fuel (HVOF) spraying have been widely used in many industrial fields, where mechanical components are subjected to severe abrasive wear. Much attention has been especially paid to nanostructured and multimodal WC-based coatings due to their excellent abrasive wear resistance. In this study, a new kind of multi-dimensional WC-10Co4Cr coating, composed of nano, submicron, micron WC particles and CoCr alloy, was developed by HVOF. The microstructure, porosity, microhardness, fracture toughness, and electrochemical properties of the coating were investigated in comparison with nanostructured WC-10Co4Cr coating deposited by HVOF. Abrasive wear resistance of both WC-10Co4Cr coatings was evaluated on wet sand rubber wheel abrasion tester. The results show that the multi-dimensional coating possesses low porosity (0.31 ± 0.09%), excellent microhardness (1126 ± 115 HV0.3), fracture toughness (4.66 ± 0.51 MPa m1/2), and outstanding electrochemical properties. Moreover, the multi-dimensional coating demonstrates approximately 36% wet abrasive resistance enhancement than the nanostructured coating. The superior abrasive wear resistance originates from the coating’s multi-dimensional structure and excellent mechanical and electrochemical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call