Abstract

TiAl-based intermetallic matrix composites with dispersed Ti2AlC particles and different amounts of Nb were successfully synthesized by mechanical alloying and hot pressing. The phase evolution of Ti–48 at%. Al elemental powder mixture milled for different times with hexane as a process control agent was investigated. It was found that after milling for 25 h, a Ti(Al) solid solution was formed; also with increase in the milling time to 50 h, an amorphous phase was detected. Formation of a supersaturated Ti(Al) solid solution after 75 h milling was achieved by crystallization of amorphous phase. Addition of Nb to system also exhibited a supersaturated Ti(Al,Nb) solid solution after milling for 75 h, implying that the Al and Nb elements were dissolved in the Ti lattice in a non-equilibrium state. Annealing of 75 h milled powders resulted in the formation of equilibrium TiAl intermetallic with Ti2AlC phases that showed the carbon that originates from hexane, participated in the reaction to form Ti2AlC during heating. Consolidation of milled powder with different amounts of Nb was performed by hot pressing at 1000°C for 1 h. Only the presence of γ-TiAl and Ti2AlC was detected and no secondary phases were observed on the base of Nb. Displacement of γ-TiAl peaks with Nb addition implied that the Nb element was dissolved into TiAl matrix in the form of solid solution, causing the lattice tetragonality of TiAl to increase slightly. The values for density and porosity of samples indicated that condition of hot pressing process with temperature and pressure was adequate to consolidate almost fully densified samples. The isothermal oxidation test was carried out at 1000°C in air to assess the effect of Nb addition on the oxidation behaviour of TiAl/Ti2AlC composites. The oxidation resistance of composites was improved with the increase in the Nb content due to the suppression of TiO2 growth, the formation and stabilization of nitride in the oxide scale and better scale spallation resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call