Abstract

Abstract Friction stir processing has been applied to fabricate SiC–Mg bulk composites in this study. AZ63 magnesium alloy, a kind of commercial engineering materials, was selected as base metal. SiC nanoparticles with average size of 40 nm were selected as reinforced particles. After being ultrasonic dispersed in ethanol and friction stir processed with base metal, the SiC particles were uniformly dispersed. Friction stir processing without filling any particles was also applied to base metal as a comparison group. Microstructure evolution was observed by optical microscope and scanning electron microscope. Fine and uniform nugget zone were found both in comparison group and composite. The phases of the material were determined by X-ray diffraction. Transmission electron microscopy observation was conducted to study the condition of SiC nanoparticles. SiC particles were found both inside the grain and at the grain boundary. No micro-sized particle agglomeration was observed in the composite. Vicker hardness and tensile test were carried out to study the mechanical properties of the composite. The average Vicker hardness of the base metal, comparison group and composite were 80 Hv, 85 Hv and 109 Hv respectively. The ultimate tensile strength of the composite reached 312 MPa. Compared with 160 MPa of the as-casted Mg alloy, 263 MPa of the comparison group, the effect of nanoparticles on strength increase was significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.