Abstract

The welding technology is significant for application of high-entropy alloys (HEAs) in the industry. In this study, the mechanical properties and microstructures of Al0.2Co1.5CrFeNi1.5Ti0.3 after welding by gas tungsten arc (GTA) welding and friction stir welding (FSW) are discussed, respectively. GTA welding of precipitated HEAs resulted in the formation of dendrites in the fusion zone; the hardness and tensile strength of the GTA weld decreased to 68% and 51% compared to the base metal, respectively. However, FSW exhibited excellent mechanical properties, which were still over 94% of the hardness value and tensile strength of the base metal. The microstructure was characterized by discontinuous dynamic recrystallization and the grain refinement effect in the stir zone. The microstructure of the two welds resulted in different mechanical properties. The weld after FSW was strengthened by the grain refinement strengthening, which almost compensates the decrease in hardness caused by the re-dissolution of all precipitates in the stir zone, while the dendritic structure strongly affected the mechanical properties and softened the fusion zone after the GTA process. During the tensile test, the digital image correlation was conducted simultaneously. It shows that the GTA weld had lower strength with nonuniform deformation in the fusion zone, while the FSW weld showed higher strength with uniform deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.