Abstract

WC–C nanocomposite film was prepared by using a hybrid deposition system of r.f.-PACVD and DC magnetron sputtering. W concentration in the film was varied from 5.2 to 42 at.% by changing the CH 4 fraction of the mixture sputtering gas of Ar and CH 4. Hardness, residual compressive stress and electrical resistivity were characterized as a function of W concentration. Raman spectroscopy, XRD and high resolution TEM were employed to analyze the structural change in the film for various W concentrations. In the present W concentration range, the film was composed of nano-sized WC particles of diameter less than 5 nm and hydrogenated amorphous carbon matrix. Content of the WC particles increased with increasing W concentration. However, the mechanical properties of the film increased only when the W concentration was higher than 13 at.%. Structural analysis and electrical conductance measurements evidently showed that the increase in hardness and residual stress occurred as the WC particles were in contact with each other in the amorphous carbon matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.