Abstract

In this paper, three different double annealing treatments were applied on the 3mm-thick Ti-6Al-2Sn-4Zr-1Mo-2Nb-0.2Si (Ti62421S) alloy plate. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile tests were used to investigate the microstructure and mechanical properties under different temperatures of Ti62421S alloy. The results show that the content of primary α phase (αp) decreases while transformed β structure (βt) increases with the increasing first-stage annealing temperature. After double annealing treatment, ordered α2 phase particles precipitate within αp and the size increases with first annealing temperature. This leads to that with increasing first annealing temperature, ultimate tensile strength (UTS) at 600~650°C increases while elongation decreases. After 1000°C/1h/AC+ 750°C/2h/AC annealing, Ti62421S alloy plate exhibits superior combination of mechanical properties at room and elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call