Abstract
For the dissimilar metal welding needs of TA2 titanium and Q235 steel, preliminary trials were conducted using laser welding methods, and the results showed that the addition of a copper interlayer and the bias of the laser beam toward the Q235 side allowed for an effective connection. The welding temperature field was simulated using the finite element method, and the optimum offset distance of 0.3 mm was obtained. Under the optimized parameters, the joint had good metallurgical bonding. Further SEM analysis showed that the microstructure of the bonding area between the weld bead and Q235 was a typical fusion weld pattern, while that of the bonding area between the weld bead and TA2 was in brazing mode. The microhardness of the cross-section showed complex fluctuations; the microhardness of the weld bead center was higher than that of the base metal due to the formation of a mixture microstructure of copper and dendritic Fe phases. The copper layer not involved in the weld pool mixing had almost the lowest microhardness. The highest microhardness was found at the bonding site of TA2 and the weld bead, mainly due to the formation of an intermetallic layer with a thickness of about 100 μm. Further detailed analysis revealed that the compounds included Ti2Cu, TiCu and TiCu2, showing a typical peritectic morphology. The tensile strength of the joint was approximately 317.6 MPa, reaching 82.71% of that of the Q235 and 75.44% of the TA2 base metal, respectively. The fracture occurred in the unmixed copper layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.