Abstract
A microstructure, a composition and mechanical properties of multi-walled carbon of nanotube-reinforced silicon carbide ceramics were examined. The amount of carbon nanotubes was up to 1% wt. Samples was prepared by spark plasma sintering. It has been found that the optimal sintering temperature is 2000°C with an exposure duration of 5 minutes and a pressure of 50 MPa. The effect of the CNT mass fraction on the Young modulus of silicon carbide ceramics composites was investigated for different temperatures and processing conditions of samples using ultrasonic techniques. It has been established that Young's modulus of ceramics decreases due to addition of CNT. Elastic properties of the composites cross section were characterized using nano-indentation. It has been revealed that the stiffness of the ceramics intergranular phase decreases due to addition of CNT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conf. Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.