Abstract

SiC/ZTM (zirconia-toughened mullite) nanocomposites were prepared by hot pressing mixtures of mullite gel, 2Y-TZP, and SiC nanopowders. The intimate mixing of Al2O3 and SiO2 components in the starting powder prevented intermediate ZrSiO4 phase formation during sintering. Addition of nano-sized SiC significantly retarded the matrix grain growth, making the microstructure much finer and more uniform. Transmission electron microscopy and high-resolution transmission electron microscopy revealed that many SiC nanoparticles were found in mullite and ZrO2 grains, and low-energy grain boundaries and mullite–liquid interfaces parallel to the {110} planes of rodlike mullite grains were formed. It is deduced that the formation of rodlike mullite grains is the result of the preferential development of these low-energy grain boundaries and mullite–liquid interfaces. The mechanical properties of the SiC/ZTM nanocomposite showed significant improvement over those of ZTM, and further enhancement in the mechanical properties was achieved by combinative strengthening with nano- and micro-sized SiC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call