Abstract
Thermoplastic elastomer (TPE) based on polyamid6 (PA6) / acrylonitrile-butadiene rubber (NBR) containing 5% wt nanoclay (Closite 30B) have been prepared via friction stir process (FSP). In this study, the essential work of fracture (EWF) approach was employed to investigate the fracture behavior of PA6/NBR nanocomposites. Also, the modulus strength of specimens was modeled by response surface methodology (RSM), considering three input variables including rotational speed (ω), traverse speed (S), and shoulder temperature (T). Thus, a quadratic mathematical model between input variables (ω, S and T) and response (modulus strength) of PA6/NBR/clay nanocomposites was achieved. Moreover, the morphology of the PA6/NBR blends containing 5% wt was investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that a sample of PA6/NBR thermoplastic elastomer (TPE) containing 5% wt nanoclay at maximum tensile strength exhibited the maximum specific essential work of fracture (we) and specific non-essential work of fracture (wp). Also, the results of the RSM method demonstrate that the optimum condition of the process was found to be at including rotational speed (ω), traverse speed (S), and shoulder temperature (T) of 1200 rpm, 25mm/min, and 146 ℃, respectively. Thus, under the condition optimum, maximum modulus strength of 658 MPa was obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.