Abstract

Deformation structures produced by high pressure torsion (HPT) and accumulative roll-bonding (ARB) were characterized by transmission electron microscopy and electron backscatter diffraction, and the mechanical properties of the ARB samples were determined by uniaxial tensile testing. The structural evolution during HPT in high purity nickel has been examined and an extended lamellar boundary structure was observed at high strains. For ARB samples deformed to high strains, an almost similar structural morphology has been observed in both interstitial free steel and in commercial purity aluminum, whereas a relatively equiaxed structural morphology was observed in high purity aluminum samples. In all samples, both deformed by HPT and ARB, the deformation structures were composed of a large fraction of high-angle boundaries, together with low-angle boundaries and isolated dislocations between the boundaries. Common characteristics have been identified in the mechanical behavior of the ARB samples, namely a very high strength, a small uniform elongation and a relatively large post-uniform elongation after necking. For HPT and ARB the structural morphology and structural parameters are compared, and for the ARB samples structure-property relationships are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.