Abstract

Microstructural analysis and mechanical testing have been carried out on medium-carbon steels to which additions of vanadium in the range 0·075–0·6 wt-% were made. The steels were either continuously cooled or isothermally heat treated after austenitization. Vanadium carbide precipitation in the proeutectoid ferrite regions of the microstructure and, more unusually, also in the pearlitic ferrite lamellae, were identified by transmission electron microscopy. Moreover, in both ferrite phases the precipitates are aligned in rows, indicative of interphase precipitation at the austenite/ferrite transformation interface. These observations are discussed in terms of the various mechanisms that have been proposed for the interphase precipitation reaction. In the alloys studied the vanadium additions were found to increase the strength of the steels by up to 100%, but to reduce the ductility and notched impact resistance. The most useful combination of increased strength with reasonable ductility and impact toughness was achieved with an addition of 0·15 wt-% V. The vanadium additions contributed to a number of variations in microstructure and therefore in strengthening mechanisms, but the largest effect was the interphase precipitation strengthening of the ferritic phases. The highest strength levels were achieved in fully pearlitic microstructures with the pearlitic ferrite lamellae strengthened by interphase precipitation of the vanadium carbide.MST/536

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.