Abstract

Abstract Mg–5Li–1Al (LA51) and Mg–5Li–1Al–0.5Y (LA51–0.5Y) alloys were smelted and rolled with different accumulated strains (36% and 68%) and rolling temperatures (373 K and 573 K). The microstructure, mechanical properties, fracture morphology and texture of the specimens were investigated. Results show that, due to the PSN (particle stimulate nucleation) mechanism, the addition of 0.5 wt.% Y improves the deformation resistance and weakens the basal texture of LA51 alloy. The effect of Y on UTS (ultimate tensile strength) of as-rolled alloys is more obvious than that of the as-cast alloy. Accumulated strain and rolling temperature could influence the twinning number, slip systems and DRX (dynamic recrystallization), thus affecting the microstructure and mechanical properties of the alloy. Under the proper combination of the above factors, the as-rolled LA51–0.5Y alloy with an accumulated strain of 68% at 573 K possesses the best comprehensive mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.