Abstract

The objectives of this work are to deposit nanocrystalline Cr3C2-25(Ni20Cr) powder by thermal spraying and to compare the performance of this coating with that obtained using conventional powder. Towards that purpose, Cr3C2-25(Ni20Cr) powders with nanocrystalline grain size and with conventional grain size were deposited using OSU-SJS high-velocity oxyfuel (HVOF) system. The microstructural features, such as morphology of the coated surface, thickness of the coating, the interface of the coating with the substrate, distribution of various phases, and grain sizes etc, were characterized with the help of optical microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM). The amount of oxide phases and pores were determined by means of image analyzer. The presence of various phases was identified by x-ray diffraction (XRD) technique. Hardness, elastic modulus, and indentation toughness were evaluated employing micro indentation technique. The results indicate the presence of three different zones containing only orthorhombic Cr3C2 phase, FCC NiCr phase, and mixture of Cr3C2 and NiCr phases in, both coatings. The grain sizes in the nanocrystalline coating were in the range of 80 to 100 nm. Nanocrystalline coating exhibits 20% increase in hardness, 40% decrease in surface roughness, and comparable fracture toughness and elastic modulus with respect to conventional coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call