Abstract

Laser-aided additive manufacturing is used for complex shapes and Ni-based superalloy parts. This study aimed to optimize the additive manufacturing process of Hastelloy X alloy to obtain its excellent mechanical properties without pores or cracks in the additively manufactured parts. The additively manufactured Hastelloy X was analyzed by comparing porosity, microstructure, and mechanical properties in as-built and post-heat treatment conditions. In addition, the pores existing inside the as-built specimen considerably decreased after the hot isostatic press (HIP) treatment. Furthermore, cell/columnar microstructures were observed owing to a fast cooling rate in the as-built condition. However, after heat treatment, dendrite structures disappeared, and recrystallized equiaxed grains were observed. The tensile test results showed that there was mechanical anisotropy along the vertical and horizontal directions, and as the microstructure changed to equiaxed grains after heat treatment, the mechanical anisotropy decreased, and the high-temperature properties improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.