Abstract
Background: Friction Stir Welding (FSW) is an efficient process for solid-state joining of two different material without melting by using a non-consumable tool. FSW process was developed for the modification of metallic material microstructure. FSW requires a precise investigation of the process, microstructure, and the welds mechanical properties in order to be used in the fabrication of high- quality engineering components. Through the efforts of improving the weld's mechanical and microstructural properties and conveying the current knowledge of the friction stir to other applications, multiple new technologies have been developed over the time. One of the latest methods to fabricate high performance joints or Nanocomposites alloys is the addition of nano- reinforcements to the joint in Friction Stir Welding (FSW) or the metal matrix in Friction Stir Processing (FSP). Objective: In this study, an overview of effect of nanoparticles on mn this study, an overview of the effect of nanoparticles on microstructural and mechanical properties of the FSW/ FSP joints is presented. The review revealed that the most widely employed additions are SiC, SiO2, Al2O3, and graphite nano-powders. Microstructural evolutions, such as grain size, second phase particles, and reinforcement distribution, usually are investigated using optical methods and Scanning Electron Microscopy (SEM). Furthermore, the mechanical properties of the joints, such as tensile strength, hardness, and wear performance, are also investigated. Based on most of the researches, microstructural evolution associated with adding nanoparticles led to improve the joints mechanical properties.icrostructural and mechanical properties of the FSW/ FSP joints is presented. The review revealed that the most widely employed additions are SiC, SiO2, Al2O3, and graphite nano-powders. Microstructural evolutions such as grain size, second phase particles and reinforcement distribution usually are investigated using optical methods and scanning electron microscopy (SEM). Furthermore, the mechanical properties of the joints, such as tensile strength, hardness, and wear performance, are also investigated Based on most of researches, microstructural evolution associated with adding nanoparticles led to improve the joints’ mechanical properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.