Abstract

Interstitial-free (IF) and dual-phase (DP) steel sheets of 1-mm thickness were joined by friction stir spot welding with a convex shoulder tool. Two different combinations were used; one with IF as top sheet (IF/DP) and another with DP as top sheet (DP/IF). Material intermixing between the overlapping sheets takes place within the stirred zone. The truncated sheet interface curls upward into the top sheet, more so in case of IF/DP, due to lower resistance offered by the top (IF) sheet to the upward migrating bottom (DP) sheet material. Material from the IF steel contains ferrite phases, while that from the DP steel contains acicular ferrite and lath martensite. Under quasi-static loading, the crack passes along the dissimilar interface and into the top sheet thickness, resulting in pull-out failure. Under cyclic loading, the failure is brought about by the initiation of kinked fatigue cracks and their subsequent propagation through the top and bottom sheet thickness. The dominant fatigue crack moves through the reduced top sheet thickness. The mechanical performance of DP/IF is better than IF/DP owing to higher strength of the stirred zone. The mechanical performances of the dissimilar joints are intermediate to that of the similar material joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call