Abstract

Fiber laser-metal active gas (MAG) hybrid welding process was explored to join X80 pipeline steel to improve the efficiency and performance of pipeline welding. During the hybrid welding process, five different positions are applied to simulate the practical pipe girth welding. The weldability is evaluated concerning the bead shape, hardness, tensile, impact properties, and microstructures of welded joints. The results reveal that the tensile strength is higher than that of the base metal and the weld has a good impact ductility and an excellent bend performance. At the same time, the difference in microstructure between the laser zone and arc zone of laser-MAG hybrid welding of X80 pipeline steel is observed. Compared with the arc zone, the laser zone has finer weld grains and a narrower heat affected zone (HAZ). The fusion zone microstructure of the arc zone mainly consists of columnar proeutectoid ferrite (PF) and fine acicular ferrite (AF), whereas that of laser zone comprises acicular ferrite, upper bainite (Bu), and granular bainite (BG), which verifies technical feasibility of hybrid welding in pipeline steel and lays a good foundation for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.