Abstract

ABSTRACTDirectionally solidified Mg-4wt-% Zn alloy was prepared and the effect of growth rate on its microstructure evolution and mechanical properties was investigated. A typical cellular structure was observed when the growth rate was lower than 60 µm s−1. The microstructure evolved from cell to columnar dendrite as the growth rate increased. The ultimate tensile strength of the directionally solidified alloy was found to be higher than that of the alloy ingot with the same cooling rate. The ultimate tensile strength of the directionally solidified alloy increased with increasing growth rate but it decreased during the cell–dendrite transition. The results indicate that the mechanical properties of the directionally solidified alloy with fine cellular and columnar dendritic structures meet the requirements of biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.