Abstract

To design a promising Al—Si filler alloy with a relatively low melting-point, good strength and plasticity for the Cu/Al joint, the Cu, Ni, Zr and Er elements were innovatively added to modify the traditional Al—Si eutectic filler. The microstructure and mechanical properties of filler alloys and Cu/Al joints were investigated. The result indicated that the Al—Si—Ni—Cu filler alloys mainly consisted of Al(s,s), Al2(Cu,Ni) and Si(s,s). The Al—10Si—2Ni—6Cu filler alloy exhibited relatively low solidus (521 °C) and liquidus (577 °C) temperature, good tensile strength (305.8 MPa) and fracture elongation (8.5%). The corresponding Cu/Al joint brazed using Al—10Si—2Ni—6Cu filler was mainly composed of Al8(Mn,Fe)2Si, Al2(Cu,Ni)3, Al(Cu,Ni), Al2(Cu,Ni) and Al(s,s), yielding a shear strength of (90.3±10.7) MPa. The joint strength was further improved to (94.6±2.5) MPa when the joint was brazed using the Al—10Si—2Ni—6Cu—0.2Er—0.2Zr filler alloy. Consequently, the (Cu, Ni, Zr, Er)-modified Al—Si filler alloy was suitable for obtaining high-quality Cu/Al brazed joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call