Abstract

In this study, the swaged (CrCoNi)97Al1.5Ti1.5 medium entropy alloys (MEAs) were twisted by free-end-torsion at room and liquid nitrogen temperatures. Microstructure in different strained layers of the twisted sample was characterized by combined use of energy dispersive spectroscopy, electron channeling contrast imaging, and electron backscatter diffraction techniques. The microhardness and overall tensile properties of the twisted sample were analyzed. The results show that the MEAs exhibit higher torque and lower torsion angle during low-temperature torsion. The deformation mechanism during torsion is dominated by dislocation slip, and gradient dislocations and lamellar dislocation substructures gradually increasing from core to surface are formed in the twisted samples. The twin content gradually decreases in the surface layer, especially when twisted at room temperature or at liquid nitrogen temperature but with a small torsion angle. The reduction of twins is related to the addition of Al and Ti, the critical shear stress of twinning, and the unique strain state of torsional deformation. The twisted samples have gradient distributions of microhardness. Torsion can effectively improve the tensile strength of the MEAs at the expense of ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.